目录

命題邏輯 Logical Equivalences 邏輯等價, Rules of Inference 推理規則

https://tool.lu/netcard/

命題邏輯 Logical Equivalences 邏輯等價, Rules of Inference 推理規則

Logical Equivalences

Equivalence Name p p p p Identity laws p   p Domination laws p p p   p p p Idempotent or tautology laws ¬ ( ¬ p ) p Double negation law p q q p   p q q p Commutative laws ( p q ) r p ( q r )   ( p q ) r p ( q r ) Associative laws p ( q r ) ( p q ) ( p r )   p ( q r ) ( p q ) ( p r ) Distributive laws ¬ ( p q ) ¬ p ¬ q   ¬ ( p q ) ¬ p ¬ q De Morgan's laws p ( p q ) p   p ( p q ) p Absorption laws p ¬ p   p ¬ p Negation laws

Logical Equivalences Involving Conditional Statements

p q ¬ p q   p q ¬ q ¬ p   p q ¬ p q   p q ¬ ( p ¬ q )   ¬ ( p q ) p ¬ q   ( p q ) ( p r ) p ( q r )   ( p q ) ( p r ) p ( q r )   ( p r ) ( q r ) ( p q ) r   ( p r ) ( q r ) ( p q ) r

Logical Equivalences Involving Biconditional Statements

p q ( p q ) ( q p )   p q ¬ p ¬ q   p q ( p q ) ( ¬ p ¬ q )   ¬ ( p q ) p ¬ q

Rules of Inference

R u l e   o f   I n f e r e n c e N a m e p p q q Modus ponens ¬ q p q ¬ p Modus tollens p q q r p r Hypothetical syllogism p q ¬ p q Disjunctive syllogism p p q Addition p q p Simplification p q p q Conjunction p q ¬ p r q r Resolution

Rules of Inference for Quantified Statements

R u l e   o f   I n f e r e n c e N a m e x P ( x ) P ( c ) Universal instantiation P ( c )   f o r   a n   a r b i t r a r y   c x P ( x ) Universal generalization x P ( x )   P ( x )   f o r   s o m e   e l e m e n t   c Existential instantiation P ( x )   f o r   s o m e   e l e m e n t   c   x P ( x ) Existential generalization

Reference

Logical equivalence - Wikipedia

Rule of inference - Wikipedia